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Coherent tunneling can be suppressed or enhanced by exciting a vibrational mode coupled to the tun-
neling coordinate. The localization in a two-level system (TLS) driven by a periodic force is obtained as
a semiclassical limit for such a mode. We derive and test a semiclassical quantization rule that relates
the quasienergies of a classically driven TLS with the energy splittings in the model of a TLS coupled to
a quantum oscillator. The dissipative stabilization of a quasilocalized state and the possibility of locali-
zation by a quasiperiodic force are analyzed from this perspective.

PACS number(s): 05.45.+b, 03.65. —w, 74.50.+r, 73.40.Gk

The effect of an external driving force on tunneling in a
symmetric double well has received a great deal of atten-
tion in the last few years after Grossmann et al. [1]
discovered that tunneling can be completely suppressed
by a periodic force. This effect is opposite the enhance-
ment of tunneling by a periodic force observed earlier by
Lin and Ballentine [2] and later investigated in the frame-
work of the Floquet formalism by Holthaus [3]. Tunnel-
ing can be suppressed when the frequency of the driving
force is small enough that the force does not induce tran-
sitions to higher energy levels of the double well. Under
these circumstances the relevant time scale of the prob-
lem is much longer than the time scale of the correspond-
ing classical problem, and the coherent suppression of
tunneling should be thought of as a purely quantum-
mechanical effect which cannot be ascribed to the
changes in the classical phase space of the system. More-
over, as was shown in the subsequent studies [4,5] most
features of the coherent suppression of tunneling are
preserved when the energy spectrum of the double well is
truncated to the lowest doublet so that the Hamiltonian
reads

H=Ao,+V(t)o,, (1)

where V() is a periodic function; e.g.,
V(t)=V,cos(wt +¢). The states where the eigenvalues
of o, are +1 and —1 correspond to populating the right
and left wells, respectively. Based on this two-level sys-
tem (TLS) approximation, simple analytical theories were
applied to show that localization occurs when the ratio of
the amplitude of the driving force to its frequency is ap-
proximately constant.

Since a real experimental situation is always plagued by
noise, in order to realize this tunneling control scheme in
practice one needs to know the answer to the question: Is
the localization phenomenon robust enough to be ob-
served when the driving force is not exactly periodic
and/or there is energy dissipation? Bavli and Metiu [6]
studied the possibility of creating a localized state in a
double well by gradually turning on a laser pulse. Farelly
and Milligan [7] showed that more efficient localization
can be achieved by driving the system with two fields
with commensurate frequencies. Morillo and Cukier [8]
discussed the possibility of controlling a tunneling chemi-
cal reaction by an external periodic field. Grossmann
et al. [9] and Dittrich, Oelschlagel, and Hanggi [10] in-
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vestigated, numerically, the effect of contaminating the
periodic force by noise, and also studied the effect of dis-
sipation using a master-equation approach. In the both
cases they found an intriguing phenomenon: localization
was stabilized by sufficiently strong dissipation or noise
instead of the naturally expected destruction of the local-
ized state. A qualitative explanation of this phenomenon
is still lacking. Gomez Llorente and Plata [5], based on
perturbative treatment of the driving force, predicted the
possibility of localization by a quasiperiodic force and in-
dicated a criterion for such localization.

In this paper we wish to point out that the same locali-
zation effect may be observed when the classical periodic
external force is replaced by the effect of a quantum oscil-
lator. Based on this observation, we study the quantum-
mechanical model and show, in particular, that all the re-
sults known for the classically driven two-level system
may be reproduced as the limit of large quantum num-
bers for the quantum oscillator. Using a semiclassical
quantization scheme, we establish the correspondence be-
tween the quasienergies in the classically driven TLS and
the energy splittings in the quantum model. We also
show the possibility of localization by a quasiperiodic
force, which corresponds to a multidimensional oscillator
in our quantum-mechanical model, and give a simple ex-
planation of the stabilization effect due to dissipation.

To describe a tunneling system interacting with a vi-
bration, we consider the Hamiltonian

2
H=Aax+Cx(I)az+—2%+V(x). 2)

Though the results obtained below apply to a rather gen-
eral form of potential ¥ (x), our particular example will
be the harmonic oscillator, ¥V (x)=mw?x?%/2, which cor-
responds to the sinusoidal driving force in the model (1).
For this case, the Hamiltonian (2) represents two coupled
parabolic surfaces, V,,=m o x+C/mw*?/2—C?%/
2m w?, which cross each other at x =0. In the absence of
tunneling (A=0) each energy level of the harmonic oscil-
lator, E, =%w(n + 1), would be doubly degenerate. Tun-
neling lifts this degeneracy, splitting each energy level
into a doublet. However, at some » the energy level may
turn out to be degenerate again or to have a very small
splitting. This, in particular, follows from scattering
theory for the curve-crossing problem, which shows that
the transition probability between the two surfaces is a
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nonmonotonic function of energy that vanishes at certain
energies [11]. The degeneracy means that the system
prepared on one of the surfaces never arrives at the other.
In other words, tunneling in the two-level system is
suppressed completely.

Using nearly degenerate perturbation theory, one ob-
tains the splitting of the nth energy level to be propor-
tional to the overlap of the harmonic-oscillator wave
functions for each surface:

24, =2A [ dx ¢,(x +C/ma* 1, (x —C/ma?)
=2Aexp(—a/2)L,(a), (3)

where a =2C?/#im ® and L, is the Laguerre polynomial.
The localized states correspond to zeros of L,. We note
first that L, has no zeros, so that the ground state is al-
ways split and the tunneling is never suppressed by an os-
cillator in the ground state. This remains true for an
anharmonic oscillator with an arbitrary potential V(x)
because its ground-state wave function has no zeros and
the overlap integral never vanishes. However, for any ex-
cited state the tunneling may be completely suppressed
by an appropriate choice of C. To establish the
correspondence between the models (1) and (2), we con-
sider the limit of large quantum numbers, n >>1. In this
case the zeros of L,(a) are given by a;=z?/(4n +2),

J J

where z; are the zeros of the Bessel function J,(z). As-
suming in this limit the amplitude of the oscillator x to

be semiclassically given by
mo*x}/2=fo(n+1), 4

so that the amplitude of the perturbation exerted by this
J

gB)y=i#" [ “dre® fax) [ Dlx(n]e

where T is the time ordering operator,
Solx()]= [ Tdt[m3 2/2—V(x)] is the classical action of
the x subsystem, and the time-dependent Hamiltonian of
the forced two-level system, H_ (x(t)), is given by (1)
with V(¢)=Cx(t). The closed paths x (¢) can be periodi-
cally continued beyond the segment O <t <7. The time
evolution operator for the system (1) becomes diagonal in
the Floquet basis (see, e.g., [15]), which gives

Tr, Pexp [—ifo’dt H,(x(1) /%

_ —ie,1/#

= e
n=0,1

=2cos(er/%), (8)

where €, ,=t¢ are the quasienergies of the two-level sys-
tem. Substituting Eq. (8) into Eq. (7) and then following
the standard route of the periodic orbit theory for semi-
classical quantization [12], one finds that coupling to a
TLS shifts the poles of the semiclassical spectral function
for the free oscillator, g .. (E),

8(E)=g o A E—E(E))+g . (E+E(E)) . 9)

Here +%(E) are quasienergies of the driven TLS calculat-
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oscillator on the two-level system equals
Vo=Cx, , (5)
one obtains the localization criterion in the form
2V0/ﬁw=zj , (6)

which is identical to the result for a classically driven
TLS obtained in [4,5].

In order for the perturbation theory exploited above to
be valid, the doublets with different n should not overlap
with each other, that is, A, should be smaller than the
energy-level spacing of the unperturbed oscillator. Since
the overlap integral of the two wave functions in (3) is al-
ways less than unity, for the harmonic oscillator the va-
lidity of our description is provided by the condition
A <<%, which does not depend on the quantum number,
and which is also the condition for (nearly) complete lo
calization in the model (1) [5]. For a dissociative poten-
tial V(x), though, the energy-level spacing decreases with
increasing »n, which may invalidate the independent dou-
blet picture at large n.

It is noted that no degeneracy is expected when the
coupling between the two-level system is of the form
Cxo,, or when there is an asymmetry (a term 8o, in the
Hamiltonian). This result is in line with the symmetry
observations made in [9].

To gain better insight into the connection between the
models (1) and (2), we next quantize the system (2) using
the semiclassical approximation for the x coordinate.
The energy levels can be determined in a standard way as
the poles of the spectral function g(E)=Tr(H—E)™!
(see, e.g., [12]), which can be represented as a path in-
tegral [13,14]

(t)]/ﬁTr,,Texp ["ifofdt H,(x(t)/% |, @

r
ed for the single periodic orbit x () of the oscillator with

energy E. For small enough A,, we then obtain iterative-
ly that each energy level of the oscillator, E,, given by
the standard Bohr-Sommerfled quantization condition, is
split into a doublet,

E=E,*A,, A,=%E,) . (10)

It should be noted that this quantization rule holds for
any form of the coupling between the oscillator and TLS
as well as for arbitrary V(x).

The quantization rule (10) answers the question about
the relationship between the model (1) and our model (2),
demonstrating that interaction between the oscillator and
TLS replaces energies of the latter by the corresponding
quasienergies. It is well known [4,5] that the localization
in the system (1) takes place when the solution to the
Schrodinger equation becomes periodic so that the
quasienergy doublet is degenerate, this condition being
identical to the localization criterion in the semiclassical-
ly quantized model (2).

It is interesting to test the formula (10) numerically. In
Fig. 1 the numerically exact values of the splittings of en-
ergy levels (n =0-16) obtained by direct numerical diag-
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FIG. 1. Half-splitting of energy levels n =0-16 for the model
(2) (separate points) and quasienergy for the model (1) (solid
line) plotted against the parameter V, /%o for C*/#mw>=0.05
and w=3.5A. The correspondence between the two models is
given by Egs. (4) and (5), or equivalently by the quantization
rule (10).

onalization of the Hamiltonian (2) (separate points) are
compared with those calculated using Eq. (10), i.e., with
the quasienergy splitting of the corresponding classically
driven TLS. For the parameters chosen, Eq. (10) turns
out to be practically exact even at n =0. Localization is
achieved at n =13, which corresponds to V,/fiw~1.14,
in accord with Eq. (6).

In Fig. 2 the dependence of the numerically found
splitting of the vibrational levels n =0, 1,2 on the parame-
ter V,/fiw is presented and compared with the semiclas-
sical result, Eq. (10) (solid line). For » =0 (dashed line),
Eq. (10) only works at sufficiently small coupling C (.e.,
small V,/%w); at higher couplings the classically driven
system exhibits localization, while the model (2) does not
for the reasons explained above. For n=1,2 the tunnel-
ing splitting vanishes at n values of V,,/%iw, which are to
a good approximation described by our quantization for-
mula, Eq. (10). Therefore, the region of the coupling pa-
rameter C in which suppression of tunneling is observed
is well described by our semiclassical quantization formu-
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FIG. 2. Half-splitting of energy levels calculated using Eq.
(10) (solid line) and by exact numerical diagonalization of the
Hamiltonian (2) for » =0 (dashed line), » =1 (dotted line), and
n =2 (dashed-dotted line), plotted against the parameter V, /%o
for w=3.5A.
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la with the accuracy improving as » increases.

At stronger couplings the splitting decreases monotoni-
cally, in contrast to Eq. (10). In this region, increasing
the quantum number always increases the splitting. This
region is characterized by the overlapping of nonoscilla-
tory tails of the oscillator wave functions in Eq. (3), i.e.,
by tunneling along the x coordinate through the reorgan-
ization energy barrier, V, (V,=C?/2mo® for the
harmonic-oscillator model), which obviously has no
analogue in the model (1). Therefore, the validity of Eq.
(10) necessitates that there be no tunneling along x, which
leads to the condition V, <#iw(n+1). For the parame-
ters adopted in Fig. 1 this condition is fulfilled even for
n =0, which explains why Eq. (10) is successful for small
quantum numbers. The analysis of Fig. 2 shows that,
indeed, this condition well describes the application scope
of Eq. (10).

So far in this paper we have been pursuing the analogy
between the two systems, showing that, indeed, there is a
full quantum-classical correspondence. In the remaining
discussion we will exploit this correspondence to show
how the questions about dissipative driven tunneling and
about tunneling driven by several periodic fields can be
addressed from the point of view of the model (2).

To take dissipation into account, the Hamiltonian (2) is
supplemented with a set of harmonic oscillators coupled
linearly to the two-level system,

H'=H+3p?/2m;+m;w0lq?/2+C;q;0, . (1
j

We assume that there is an upper cutoff v, for the bath
spectral density, J(v)=7rszj25(v—-wj )/2m;®;, such
that J(v) vanishes for v=v, <. This condition prohi-
bits the phonon-induced transitions between the doublets
of the Hamiltonian H in low orders of perturbation
theory. For this reason, one can consider the dynamics
within a single doublet independently of all other dou-
blets. In other words, if the system is initially prepared in
the nth doublet, we can replace the Hamiltonian H in (11)
by an effective TLS, H=A,0,. The solution to the re-
sulting spin-boson problem has been the subject of a good
deal of literature (see, e.g., the review [16] and references
therein). Just with an illustrative purpose, we use below
the Redfield theory (Bloch equations) approximation,
where the expectation {o,) satisfies a Langevin-type

equation

(G,)+n(5,)+A%(c,)=0. (12)

The friction coefficient here is the sum of the rate con-
stants for intradoublet transitions and is equal to
n=2#%" 'J(A,)coth(#iA, /2kyT). If n/2<A,, {(c,) ex-
hibits damped oscillations with the damping coefficient
equal to 1/2 and therefore increasing with increasing
friction. However, if /2> A,,, {o,) decays exponential-
ly with the relaxation rate decreasing as 7 increases (in
the limit 7 >>A,, this rate is A2 /5). Formulated in terms
of our original problem, this is nothing but the effect of
stabilization of the localized state by dissipation, ob-
served in [9,10]. A more careful nonperturbative treat-
ment [16] of the spin-boson Hamiltonian confirms the
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qualitative conclusion that dissipation slows down the
delocalization. For example, in the Ohmic case,
J(v)=yvexp(—v/v,), the relaxation rate is proportional
to T2*~ !, where a=2y /# is the Kondo parameter. If
a <1, the relaxation rate decreases with increasing tem-
perature, in accord with the result obtained in [10].

The two-state model studied here does not explain the
increase in the relaxation rate at temperatures above a
certain critical temperature, observed in [10]. We believe
this increase can only be accounted for if one goes beyond
the TLS model for tunneling. In an actual double well,
increasing T populates higher energy levels, which
enhances the transitions between the wells, thereby more
effectively destroying the localized state.

We proceed next to the possibility of localization by a
quasiperiodic force. For the model (1) we set
V()=3N_ Vcos(w;t +¢;) with incommensurate fre-
quencies w;. The Hamiltonian is no longer periodic and
the standard periodicity arguments [4] cannot be invoked
to explain localization.

For the model (2) one replaces the one-dimensional
harmonic oscillator by an N-dimensional oscillator with
eigenfrequencies w;, so that Egs. (4) and (5) are satisfied
separately for each mode. If we adopt the two-state
treatment for each doublet, the formula (3) can be used,
save that a single overlap integral will be replaced by the
product of overlap integrals for each oscillator. This
leads us to a somewhat unexpected conclusion: as long as
the doublets are considered well separated, localization is
observed whenever the localization condition [Eq. (6) in
the case of large quantum numbers] is fulfilled for one of
the oscillators, no matter what the parameters of the
remaining oscillators are. This conclusion is, however, in
agreement with the considerations presented in [5] for the
classically driven system. To demonstrate this, we use
the perturbative formula derived in that paper. If at t =0
the system is entirely in the left state, then the probability
of finding it in the right state after time ¢ is

p(t)=A? fotdt’exp

s t’ n ”n 2
=2 [larva ||
2
:AZ

N OV,
203, sin(w;1'+4;) (13)

i=1 1

f Otdt’exp
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According to [5], the two-level system can be localized
if the zero Fourier component of the integrand
in Eq. (13) vanishes, that is, fw dt'exp[2i SN (V,/
#iw; )sin(w;t'+¢,;)]=0. Using the Fourier series,

eiasin6= E Jk(a)eikO , (14)
k=—w
this integral can be transformed to
- N
[ 7 dt'exp |2i 3 (V, /A0, sin(w,1"+¢;)
e i=1
Vi Vn
= Je 25— 22—
kl,..z.,kN kl ﬁwl kN ﬁwN ]
N N
Xexp [i 3 k¢ |8 | kio; (15)
i=1 i=1

Because all frequencies are incommensurate, the only
term that survives in this sum is proportional to the prod-
uct, [T ,Jo[2(V; /%®;)], which vanishes whenever any
pair, V; and w;, satisfies the localization condition (6), in
accord with our prediction for the model (2).

As a final remark, we mention that while the possibility
of controlling tunneling experimentally by applying a
classical driving field is presently being speculated in the
literature, the quantum control of tunneling has virtually
been realized in the experiments on mode specificity of
tunneling [17,18] (see the recent review [14] for a more
detailed reference list). By analyzing the laser fluores-
cence excitation spectra for jet-cooled tropolone [17,18],
it was concluded that the excitation of some nonreactive
vibrational modes partially or even completely suppresses
proton tunneling, while other vibrations promote it.
Whether the observed tunneling splitting increases or de-
creases in a progression of vibrational levels depends on
the symmetry of the excited mode. All these experimen-
tal findings are clearly in harmony with the results for the
model (2) described here.

I am grateful to Professor Victor A. Benderskii for
drawing my attention to the mode specificity of tunneling
and to Professor Nancy Makri for many insightful dis-
cussions.
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